First-order systems of linear partial differential equations: normal forms, canonical systems, transform methods
نویسندگان
چکیده
منابع مشابه
Exact and numerical solutions of linear and non-linear systems of fractional partial differential equations
The present study introduces a new technique of homotopy perturbation method for the solution of systems of fractional partial differential equations. The proposed scheme is based on Laplace transform and new homotopy perturbation methods. The fractional derivatives are considered in Caputo sense. To illustrate the ability and reliability of the method some examples are provided. The results ob...
متن کاملDifferential transform method for solving linear and non-linear systems of partial differential equations
Article history: Received 9 May 2008 Received in revised form 18 June 2008 Accepted 6 October 2008 Available online 10 October 2008 Communicated by A.R. Bishop PACS: 02.60.Lj 02.60.Cb 02.30.Jr
متن کاملSystems of Linear First Order Partial Differential Equations Admitting a Bilinear Multiplication of Solutions
The Cauchy–Riemann equations admit a bilinear multiplication of solutions, since the product of two holomorphic functions is again holomorphic. This multiplication plays the role of a nonlinear superposition principle for solutions, allowing for construction of new solutions from already known ones, and it leads to the exceptional property of the Cauchy–Riemann equations that all solutions can ...
متن کاملComputational technique of linear partial differential equations by reduced differential transform method
This paper presents a class of theoretical and iterative method for linear partial differential equations. An algorithm and analytical solution with a initial condition is obtained using the reduced differential transform method. In this technique, the solution is calculated in the form of a series with easily computable components. There test modeling problems from mathematical mechanic, physi...
متن کاملFirst Order Partial Differential Equations
If T⃗ denotes a vector tangent to C at t,x,u then the direction numbers of T⃗ must be a,b, f. But then (1.2) implies that T⃗ n⃗, which is to say, T⃗ lies in the tangent plane to the surface S. But if T⃗ lies in the tangent plane, then C must lie in S. Evidently, solution curves of (1.2) lie in the solution surface S associated with (1.2). Such curves are called characteristic curves for (1.2). W...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
سال: 2014
ISSN: 2300-133X
DOI: 10.2478/aupcsm-2014-0009